<i id="p68vv"><noscript id="p68vv"></noscript></i>
    <track id="p68vv"></track>

      <video id="p68vv"></video>
    <track id="p68vv"></track>
    <u id="p68vv"><bdo id="p68vv"></bdo></u>

  1. <wbr id="p68vv"><ins id="p68vv"><progress id="p68vv"></progress></ins></wbr>
    <code id="p68vv"></code>
      <output id="p68vv"><optgroup id="p68vv"></optgroup></output>
  2. 第六屆全國腐蝕大會演講嘉賓——蔡文達(dá)
    2013-06-26 09:52:20 作者:本站整理來源:

    Corrosion Performance of Ni and Ni-P Coatings via Electrodeposition in an Emulsified Supercritical CO2 bath

      Sung-Ting Chung, Yan-Chi Chuang, Cheng-Yu Li, Shih-Yi Chiu, Wen-Ta Tsai*

      * E-mail : wttsai@mail.ncku.edu.tw

      Department of Materials Science and Engineering National Cheng Kung University, Tainan, Taiwan
     

      報告人:蔡文達(dá)

      個人簡介:

      臺灣臺南市成功大學(xué)特聘教授 ,歷年來執(zhí)行數(shù)十項(xiàng)腐蝕相關(guān)研究課題,研究成果總計已有215篇學(xué)術(shù)期刊論文發(fā)表,其中有SCI論文166篇;而國內(nèi)外學(xué)術(shù)研討會發(fā)表的論文超過285篇,已獲得國內(nèi)外核準(zhǔn)的專利有10件,其它技術(shù)報告已超過120件。

      曾任兩屆防蝕工程學(xué)會理事長,主辦第九屆亞太腐蝕控制會議,參與海峽兩岸材料腐蝕防護(hù)研討會的舉辦,為推動海峽兩岸腐蝕專業(yè)的交流與合作做出巨大貢獻(xiàn)。
     

     NCKU: National Cheng Kung University

    • Founded: 1931
    • Area : 183 hectares
    • Colleges: 9
    • Departments: 40
    • Institutes: 51
    • Personnel : 5084
    •  Faculty : 1278
    •  Staff : 1531
    •  Affiliated Hospital : 2275
    •  Enrollment : 21889
      •   Undergraduate : 11056
      •   Master : 7417
      •   Doctoral : 3416

    Background information


         Properties and applications of nickel (Ni) deposition

    Properties: Electrical conductivity, Corrosion resistance, …etc.

    Applications: Electronic packaging, MEMS, advanced integrated circuit (IC), Anti-corrosion, Anti-wear, Decoration…etc.

    Methods of nickel (Ni) deposition

    Dry Process

    1. PVD
    2. CVD
    3. Sputter…etc.

    Wet Process

    1. Electroplating
    2. Electroless plating…etc.

         Advantages and Disadvantages of Wet Process

    Advantages :
    Cheap
    Easy to operate
    High deposition rate…etc

    Disadvantages:
    The formation of hydrogen may create several pin-holes on the film.
    Wastewater treatment (toxic species)…etc

    Possible solutions:
    Non-aqueous or green electrolytes:
    ionic liquids and supercritical CO2…etc
    #p#副標(biāo)題#e#

    Supercritical Fluids

      Characteristics of CO2

      CO2  Phase Diagram

     

      Critical properties of various solvents

     

      Characteristic of CO2  : Gas, Supercritical Fluid and Liquid

      Gas-like Diffusivity

      Liquid-like Density

      Low Surface Tension
     

    New Technology for Electrodeposition
     

      Supercritical Nano-Plating (SNP)

      Sone and colleagues have demonstrated the electrodeposition of nickel from an emulsion of an aqueous nickel plating solution in sc-CO2 bath.

     

      Nonionic surfactant : PEO-PPO (6 wt.%)

      sc-CO2 volume fraction vs. Current efficiency & Resistance


      The result indicates that the plating electrolyte can be reduced at 60% compared to that of currently industrially by used plating bath.#p#副標(biāo)題#e#

      The plated films using this method have a uniformity of surface and the grain size is smaller than that formed by using conventional electroplating methods.
     

      Experimental Conditions for Electrodeposition

      Substrate

                  • Brass substrate cut in2.4 × 1 cm2×2

                  • Polish in a slurry containing 0.3 μm Al2O3 powder

      * Modified Watt’s bath including NiSO4·6H2O, NiCl2·6H2O and H3BO3

      Plating condition

               • Current density: 5 A/dm2 for Ni and Ni-Al2O3 deposits

                                              2 A/dm2 for Ni-P alloy coatings

               • Temperature : 50oC

               • Total charge : 108 coul.

               • Aqueous electrolyte : 0.1 MPa (air), 10 MPa (Ar)

               • Electrolyte containing CO2  fluid: 5 MPa, 10 MPa and 15 MPa

      Heat-treatment

      The heat-treatment of Ni-P alloy coatings was performed from room temperature to heat-treated temperature for 1 hr. (350, 400, 450, 500, and 550oC)

      

          Experimental Apparatus for Electrodeposition
     


     

      Materials Characterization for Electrodeposits

    Experimental (I)    Pure Ni deposits
     

      Material Characterization (Ni Electrodeposit)

    Crystal structure

     

      Current efficiency

      

    Surface roughness

      Chemical composition(effect of sc-CO2 fluid)#p#副標(biāo)題#e#

      Chemical shift        

    • C(graphite) : 284.6 eV
    • C dissolved in Ni lattice

              C(Ni-C) : 282.8 eV

           Possible reactions responsible for the formation of Ni-C deposit:
           Ni2+ + 2e- à Ni
           2H+ + 2e- à H2
           HCO3- + 5H+ + 4e- → C + 3H2O
     

      Microstructure and Micro-hardness

      TEM microstructure

     

      Grain size and micro-hardness

      Electrochemical behavior

      Potentiodynamic polarization curve

      Test in 1 M HCl solution


    EIS result

      Electrochemical behavior (effect of crystallographical orientation)#p#副標(biāo)題#e#

      Crystal structure

     

      Schematic diagram

     

      
    Microstructure and Micro-hardness

         (effect of CO2 pressure)
     

      TEM microstructure


     

    Grain size and micro-hardnes

      The dependence of micro-hardness on the grain size is also revealed

      Hall-Petch equation  σy  =  σo + kyd-1/2
     

      Electrochemical behavior

      -- Potentiodyamic polarization curve

    Test in 1 M HCl solution

    Experimental (II)  Ni-Al2O3 composite coatings
     

      Surface morphology and cross section micrograph

      (electrolyte containing 10 g/L Al2O3)

    Surface morphology

    Cross section micrograph

      Micro-hardness & Wear rate (electrolyte containing 10 g/L Al2O3)

      Ni/Al2O3 deposits

      Wear resistance#p#副標(biāo)題#e#

      Ni-P/Al2O3 deposits

      Wear resistance

      Electrochemical behavior (electrolyte containing 10 g/L Al2O3)

      -- Potentiodyamic polarization curve


      Surface morphology and cross section micrograph (electrolyte containing 10 g/L SiC)

      Surface morphology

     

    Cross section micrograph

      Micro-hardness & Wear rate(electrolyte containing 10 g/L SiC)

      Electrochemical behavior (electrolyte containing 10 g/L SiC)#p#副標(biāo)題#e#

      Test in 3.5 wt.% NaCl solution

      Electrochemical behavior

      Schematic diagrams

    Experimental (III)  Ni-P alloy coatings

      P content  effect of [H3PO3]

      The co-deposition mechanism for the Ni-P alloy coatings
            
            Ni2+ + 2e- à Ni
            6H+ + 6e- à 6Hads

            Direct mechanism:
            H3PO3 + 3H+ + 3e- à P + 3H2O

            Indirect mechanism:
            H3PO3 +6Hads à PH3 + 3H2O
            2PH3 + 3Ni2+ à 3Ni + 2P + 6H+
     

      Grain size (effect of P content)

    In conventional electrolyte



    In emulsified sc-CO2 bath

      Hardness  effect of grain size

      Hall-Petch equation

      Grain size > 10 nm

      σy  =  σo + kyd-1/2

      Inverse Hall-Petch equation#p#副標(biāo)題#e#

      Grain size < 10 nm

      σy  =  σo - kyd-1/2
     

      Electrochemical behavior  effect of P content

      -- Potentiodyamic polarization curve

      Test in 1 M NaOH solution

     

      (Test in 1 M HCl solution)

      The formation of an adsorbed film of hypophosphite (H2PO2-) generated by the oxidation of phosphorus present in the coating surface, which in turn blocks the water molecules from interacting with nickel, thus inhibiting nickel oxidation.
     

      Electrochemical behavior   effect of heat treatment

      Test in 1 M HCl solution

    Conclusions

      The Ni-based deposits could be successfully fabricated from an emulsified sc-CO2 bath.

      The surfactant addition in sc-CO2 containing electrolyte play an important role on the surface appearance of the deposits. When electrodeposition was performed in the emulsified sc-CO2 electrolyte, a flat and almost pinhole-free surface was observed.

      Carburization of metal can be achieved by electrodeposition in the sc-CO2 -containing baths. As a result, the hardness of Ni-based films deposited in the sc-CO2  bath was enhanced by the additional solid solution strengthening mechanism.

      

      

      In 1 M HCl solution, the Ni film deposited in sc-CO2 bath had a lower anodic current density and a higher polarization resistance, which is mainly attributed to the crystallographical orientation.

      The high P content in the deposit was beneficial to enhance the corrosion resistance of the Ni-P alloy coating, in 1 M HCl solution.

      Heat treatment significantly enhances the hardness and corrosion resistance compared to the as-deposited Ni-P alloy.
     

    Acknowledgements

      The authors thank the National Science Council of the Republic of China under Contract No. NSC 98-2622-E-006-032 for partially supporting the use of instruments for surface characterization.


     

    日韩人妻精品久久九九_人人澡人人澡一区二区三区_久久久久久天堂精品无码_亚洲自偷自拍另类第5页

    <i id="p68vv"><noscript id="p68vv"></noscript></i>
      <track id="p68vv"></track>

        <video id="p68vv"></video>
      <track id="p68vv"></track>
      <u id="p68vv"><bdo id="p68vv"></bdo></u>

    1. <wbr id="p68vv"><ins id="p68vv"><progress id="p68vv"></progress></ins></wbr>
      <code id="p68vv"></code>
        <output id="p68vv"><optgroup id="p68vv"></optgroup></output>
    2. 亚洲人成aⅴ在线播放橙子 中文AV高清不卡在线 | 在线播放一区二区不卡三区 | 伊人色综合网久久天天 | 老鸭窝AV在线永久免费观看 | 中文字幕精品亚洲无线码一区 | 亚洲精品中文AV字幕乱码 |