隨著電子技術的發展,電路板上的器件引腳間距越來越小,器件排列更加密集,電場梯度更大,這都使得電路板對腐蝕更為敏感。另一方面,電路板應用環境的拓展和產品可靠性壽命要求的不斷增加,使得電路板發生腐蝕失效的風險不斷增加。
其中大氣環境作為電路板腐蝕發生的外部條件,大氣污染物在產品腐蝕發生的過程中扮演了重要角色。由于與大氣污染物相關的故障通常在電子產品使用一段時間后才能顯現出來,這意味著一旦發生了腐蝕引起的故障,相同環境下相同使用年限的產品將進入故障集中爆發期。同時污染對電子產品的影響是不可逆的,會對維修造成很大困難,甚至導致產品的報廢。因此在產品設計之初進行相應的大氣污染物的防護設計很有必要。 在以往研究中的有關電路板腐蝕問題,主要聚焦于特定類型的腐蝕機理及緩蝕劑的研究。電路板涂覆涂層的研究中,偏向在平面條件下保護涂層的不同材質、不同厚度等因素對防護和可維修性的分析,少有專門針對工程實際中電路板防護涂層的涂覆薄弱點評估和關于電路板腐蝕防護的系統性介紹。 在以往研究的基礎上,本文結合電路板大氣污染物防護的實際問題,從電路板典型腐蝕失效和保護涂層的涂覆薄弱點入手,探討電路板類產品應對大氣污染物的具體防護措施。 大氣污染物分類 固態微粒——灰塵 灰塵中通常含有氯離子、硫酸根、硝酸根等水溶性鹽分。除了直接使設備內部金屬接插件或金屬觸點接觸不良外,還會在金屬表面促使水膜的形成。水溶性成分溶解在水膜中,將會加速金屬腐蝕的發生,導致電路板絕緣阻抗下降。若在電路板工作過程中,可能會發生更為嚴重的電偶腐蝕。 液態空氣污染物——鹽霧 此處描述的液態空氣污染物除了廣義上的液體外,還包含了被氣體攜帶的液體和空氣中霧化液滴狀物的氣溶膠。沿海地區的空氣中,鹽霧含量較高,主要成分是NaCl,NaCl在化學上比較不活潑,但在潮濕及有水的情況下,會產生Cl-,與Cu,Ni,Ag等金屬或合金反應。 氣態空氣污染物——SO2,H2S 含硫化合物是大氣中最主要的污染物之一,大氣中H2S和SO2主要來自采礦、含硫燃料的燃燒及冶金、硫酸制造等工業過程。H2S和SO2是強可變組分,H2S在加熱情況下可分解為H2和S。排放到空氣中的SO2與潮濕空氣中的O2和水蒸氣反應,在粉塵等催化劑作用下化合生成H2SO4。 腐蝕失效機理和形態 局部腐蝕 腐蝕集中在金屬材料表面的小部分區域內,其余大部分表面腐蝕輕微或不發生腐蝕。主要由于金屬表面狀態(涂層缺陷、化學成分等)和腐蝕介質分布的不均勻,導致電化學性不均勻,即不同的部位具有不同的電極電位,從而形成電位差,驅動局部腐蝕的產生。在局部腐蝕過程中,陽極區域和陰極區域區別明顯,通常形成小陽極大陰極的組態,陽極腐蝕嚴重。 微孔腐蝕 一種特殊的局部腐蝕,常見于鍍金元件上的特殊電偶腐蝕。由于鍍層表面微孔或其他缺陷的存在,中間過渡層甚至基體金屬暴露在大氣中,Au與其他金屬形成大陰極小陽極的電偶對,發生電化學腐蝕。腐蝕產物的出現進一步導致表面缺陷的增大,最終導致鍍層破壞。受接觸表面微孔腐蝕產物的影響,腐蝕區域將表現出較高的接觸阻抗和相移。 電解腐蝕 在相鄰導體間距較近且存在偏壓的情況下,將形成較強的電場。若此時導體存在液膜,電位較高的導體將會被溶液電解,形成的離子向另一導體遷移,導致導體間絕緣性能迅速下降,破壞導體,最終導致設備失效。 典型腐蝕與防護 電路板典型腐蝕失效 電路板上會用到多種物料,物料的選型對于腐蝕反應的發生有重要影響。以工程實際中遇到的厚膜電阻硫化、SMD LED兩種典型硫化失效和印制板銅腐蝕為例,比較不同器件封裝結構和材料選擇對電路板抗腐蝕能力的影響。 厚膜貼片電阻硫化腐 典型抗硫化電阻封裝結構如圖1所示。通過1年的對比應用試驗表明,電阻硫化失效率大大降低,新封裝結構的厚膜電阻具有良好的抗硫化作用。 硅膠封裝LED硫化腐蝕失效 典型的貼片封裝LED結構如圖2所示,其中與金線相連的一般為鍍銀支架,灌封材料則通常根據廠商而異。實際應用中,在含硫量較高的地區使用硅膠封裝LED,被硫化的風險很高。 圖2 貼片LED結構 圖3 被硫化的硅膠封裝LED 圖4 金相顯微鏡下的被硫化的硅膠封裝LED開封圖片 圖5 LED支架區域SEM圖像 圖6 EDS分析結果 印刷電路板的銅腐蝕 圖8 化學鎳金處理的電路板過孔腐蝕 圖9 熱風整平噴錫處理的電路板過孔腐蝕 圖10 電路板ICT測試壓痕 涂層涂覆 印制電路板的器件腐蝕通常從引腳或器件邊緣誘發,歷經表面涂層損傷、界面腐蝕擴展、金屬腐蝕擴展、元器件內腔腐蝕等階段。三防漆作為一種特殊配方的涂料,用于保護電路板免受環境的侵蝕。 表1 IPC-A-610建議涂覆厚度 圖11 保護涂層的薄弱點 圖13 鹽霧試驗方案 試驗結果表明,在三防漆涂覆工藝相同的前提下,不同物性參數和涂覆厚度的三防漆在電路板的防護效果上有較大的差異。適當提高三防漆材質黏度和厚度能有效改善器件引腳處和器件邊沿處防護效果,保證涂層的完整性,進一步提高了電路板器件工作過程的抗腐蝕能力。 結構防護 圖15 IP67電路板防護外殼 提高防護等級可能會導致如散熱、人機交互、成本等方面的問題。當系統中引入風扇時,需注意風道設計。根據設備的使用環境,合理選擇產品的散熱方式和風扇的位置。當風扇置于進風口位置,應注意避免在設備內部形成渦流,且進風口位置避免放置管腳密度較大的器件,以減少局部區域積灰嚴重的問題出現,避免固體顆粒污染物聚集。 結論 3) 適當提高結構設計的IP防護等級和合理的風道設計,可以有效降低大氣污染物入侵。01
02
03
免責聲明:本網站所轉載的文字、圖片與視頻資料版權歸原創作者所有,如果涉及侵權,請第一時間聯系本網刪除。

官方微信
《腐蝕與防護網電子期刊》征訂啟事
- 投稿聯系:編輯部
- 電話:010-62316606-806
- 郵箱:fsfhzy666@163.com
- 腐蝕與防護網官方QQ群:140808414