<i id="p68vv"><noscript id="p68vv"></noscript></i>
    <track id="p68vv"></track>

      <video id="p68vv"></video>
    <track id="p68vv"></track>
    <u id="p68vv"><bdo id="p68vv"></bdo></u>

  1. <wbr id="p68vv"><ins id="p68vv"><progress id="p68vv"></progress></ins></wbr>
    <code id="p68vv"></code>
      <output id="p68vv"><optgroup id="p68vv"></optgroup></output>
  2. 聚苯胺涂層技術(shù):為博物館鋼制文物提供防腐蝕新方案 · 上
    2024-10-22 13:40:49 作者:PCI可名文化 來(lái)源:PCI可名文化 分享至:

     

     

    「摘 要

    因?yàn)閺陌<?Al-Qala 軍事博物館獲得的鋼制矛頭具有重要的考古價(jià)值,所以本研究的目的是驗(yàn)證在這些矛頭上應(yīng)用無(wú)暇聚苯胺涂層的可行性,以保存并保護(hù)它們免受腐蝕。利用X射線衍射(XRD)、掃描電子顯微鏡(SEM)和能量色散X射線能譜(EDX)表征矛頭的化學(xué)成分和微觀結(jié)構(gòu)。矛頭為鋼制結(jié)構(gòu),因?yàn)樗鼈儽砻嬗醒趸F涂層和其他腐蝕產(chǎn)物,所以需要在矛頭上電化學(xué)沉積一層無(wú)暇聚苯胺涂層,這種方法既快速又便宜。我們采用多種腐蝕測(cè)試來(lái)確定涂層的有效性,如電化學(xué)阻抗譜和動(dòng)電位極化(PDP)讀數(shù)。

     

    鋼制矛頭的研究結(jié)果表明,在涂覆無(wú)暇聚苯胺后,其抗腐蝕能力有了顯著提高,這種涂層起到了屏障的作用,阻擋了水和其他腐蝕性物質(zhì),而且減緩了腐蝕副產(chǎn)物在矛頭上積聚。總之,我們的研究表明,無(wú)瑕疵的聚苯胺涂層可能是古代鋼鐵文物的一種有效防腐處理方法,而且這種方法簡(jiǎn)單、廉價(jià)而且很容易擴(kuò)展到大規(guī)模的保護(hù)工作中。

    關(guān)鍵詞:保存、環(huán)保涂層、腐蝕控制、矛頭、表面表征、考古鋼矛

    *關(guān)注我們,下期敬請(qǐng)期待!

    作者 | Mohamed M. Megahed 1, Noha H. Elashery, 

    Saleh M. Saleh & Ashraf M. El?Shamy

     

     

     

     

     

    一、概 述

     

     

     

     

     

    從考古挖掘中找到的鋼鐵物品必須經(jīng)過(guò)有效的防腐處理,以確保能夠?yàn)楹蟠4嫠鼈?sup style="-webkit-tap-highlight-color: transparent; margin: 0px; padding: 0px; outline: 0px; max-width: 100%; box-sizing: border-box !important; overflow-wrap: break-word !important; font-size: 11px;">1。本研究特別關(guān)注聚苯胺作為保護(hù)涂層的潛在用途,以保存如在 Al-Qala 埃及軍事博物館中發(fā)現(xiàn)的鋼制矛頭。考古遺址經(jīng)常出土包括矛頭、劍刃和各種武器在內(nèi)的鋼鐵文物2。這些文物在科學(xué)界具有巨大的意義,揭示了古代文化及其技術(shù)進(jìn)步3

     

    然而,鋼鐵極易受到腐蝕,這對(duì)考古文物的長(zhǎng)期保存構(gòu)成了重大威脅,為了應(yīng)對(duì)這一挑戰(zhàn),保護(hù)涂層已經(jīng)成為一種可行的解決方案,其中聚苯胺是一個(gè)很有前途的候選者4聚苯胺是一種導(dǎo)電聚合物,因耐腐蝕特性而聞名,在保護(hù)各種金屬特別是鋼鐵方面已經(jīng)證明了它的有效性5。許多研究已經(jīng)努力探索了聚苯胺涂層在防止鋼制品腐蝕方面的潛力6

     

    例如,對(duì)涂有聚苯胺的鋼片進(jìn)行了鹽霧試驗(yàn),結(jié)果表明,與未涂有聚苯胺的鋼片相比,涂有聚苯胺的鋼片的腐蝕速度大大降低7。類似地,在不同環(huán)境中(包括高濕度和高污染環(huán)境),聚苯胺涂層保護(hù)鋼釘?shù)难芯恳诧@示了這種涂層在減輕腐蝕方面的有效性8

     

    有趣的是,我們還研究了聚苯胺涂層在保存古代鋼鐵文物(如中國(guó)武器)中的適用性9。這一發(fā)現(xiàn)強(qiáng)調(diào)了使用聚苯胺涂層作為一種非侵入性方法來(lái)保護(hù)具有歷史和考古意義的鋼鐵文物的可行性10此研究還探索了聚苯胺涂層在防止混凝土結(jié)構(gòu)內(nèi)鋼筋腐蝕方面的潛在應(yīng)用11。結(jié)果表明,其腐蝕速率顯著降低,對(duì)結(jié)構(gòu)耐久性有潛在益處12

     

     

    此外,我們對(duì)在鹽水中長(zhǎng)時(shí)間浸泡涂有聚苯胺的鋼表面進(jìn)行了研究,結(jié)果證明了這種涂層即使在惡劣的環(huán)境中也有抗腐蝕的能力13。總而言之,聚苯胺涂層有望成為保護(hù)古代鋼制文物(比如埃及Al-Qala軍事博物館的矛頭)免受腐蝕的有價(jià)值工具14,這些涂層的優(yōu)點(diǎn)是易于通過(guò)各種方法(包括浸涂)進(jìn)行涂抹,并且它們?cè)诟鞣N條件下都能發(fā)揮效用15。雖然這一研究領(lǐng)域相對(duì)較新,但早期的研究結(jié)果令人鼓舞16。然而,還需要進(jìn)一步研究才能充分理解聚苯胺涂層在保護(hù)行業(yè)中的長(zhǎng)期影響17。特別是在考古研究的背景下,與古代文物的保存和防腐有關(guān)的歷史工作有著豐富而不斷發(fā)展的歷史18

     

    多年來(lái),在保護(hù)文化遺產(chǎn)的堅(jiān)定承諾和對(duì)材料科學(xué)不斷發(fā)展的理解的推動(dòng)下,文物保護(hù)領(lǐng)域取得了重大進(jìn)展。在此,我們深入探討了一些塑造這一迷人進(jìn)展的歷史方面和顯著的貢獻(xiàn)。文物保護(hù)的根源可以追溯到具有文化和歷史文物價(jià)值的古代文明19,例如,古埃及和希臘文明采用了各種方法,比如把文物埋在墓穴中,或者使用蠟、油或樹(shù)脂等保護(hù)涂層來(lái)保護(hù)文物免受環(huán)境腐蝕。

     

    在19世紀(jì)和20世紀(jì)初,一些先驅(qū)考古學(xué)家和學(xué)者開(kāi)始認(rèn)識(shí)到系統(tǒng)保護(hù)措施的重要性20,其中挖掘特洛伊古城的海因里希·謝里曼通過(guò)仔細(xì)記錄和保存已發(fā)現(xiàn)的寶藏,這表現(xiàn)出對(duì)文物保護(hù)的決心21。我們今天所知的保護(hù)科學(xué)學(xué)科出現(xiàn)于20世紀(jì)中期,化學(xué)和材料科學(xué)等科學(xué)原理的結(jié)合徹底改變了文物保護(hù)措施,這標(biāo)志著一種更加系統(tǒng)化、更科學(xué)的文物保護(hù)方法的開(kāi)始22

     

    在文物保護(hù)中使用聚合物涂層(如聚苯胺)是一個(gè)相對(duì)較新但前景廣闊的方法,聚苯胺具有具有導(dǎo)電性和保護(hù)性,在保護(hù)金屬文物(包括古代鋼制矛頭)方面?zhèn)涫荜P(guān)注23。這種創(chuàng)新方法提供了一種非侵入性的方式來(lái)保護(hù)這些歷史文物免受腐蝕和變質(zhì)。隨著時(shí)間的推移,文物保護(hù)領(lǐng)域的發(fā)展得益于考古學(xué)家、文物保護(hù)人員、材料科學(xué)家和其他專家之間合作的增加24

     

    國(guó)際博物館理事會(huì)(ICOM)和聯(lián)合國(guó)教科文組織等國(guó)際組織在促進(jìn)知識(shí)交流和制定文物保護(hù)道德準(zhǔn)則方面發(fā)揮了關(guān)鍵作用。雖然取得了重大進(jìn)展,但是文物保存方向依然存在挑戰(zhàn)25。諸如保護(hù)涂層的長(zhǎng)期穩(wěn)定性和圍繞侵入性保護(hù)方法的道德考量等問(wèn)題繼續(xù)推動(dòng)著研究和辯論。無(wú)損檢測(cè)和成像等先進(jìn)技術(shù)的結(jié)合為未來(lái)的考古研究提供了令人興奮的可能性26。總之,文物保護(hù)和防腐的歷史歷程證明了人類保護(hù)文化遺產(chǎn)的決心27,從古代文明到現(xiàn)代科學(xué)創(chuàng)新,這一領(lǐng)域在不斷發(fā)展以確保子孫后代能夠通過(guò)保存古代文物來(lái)感嘆我們過(guò)去的豐富多彩。聚苯胺等尖端材料的融合突顯了保存措施的動(dòng)態(tài)性質(zhì),為考古珍寶的保護(hù)帶來(lái)了光明的未來(lái)28

     

     

     

    二、材料與方法

     

     

    2.1 材料

     

     

     

     

     

    2.1.1 鋼矛及其狀況描述

     

     

     

     

     

    在Al-Qala附近發(fā)現(xiàn)并現(xiàn)存于埃及軍事博物館的鋼制矛頭是一件構(gòu)造精美、保存完好的文物。它是由優(yōu)質(zhì)鋼材制成的,且長(zhǎng)度從6厘米到11厘米不等。矛頭的特點(diǎn)是在細(xì)長(zhǎng)矛桿的末端有一個(gè)鋒利的尖頭,矛刃略微彎曲。專家們認(rèn)為,鋼質(zhì)武器可能起源于古埃及新王國(guó)時(shí)代(公元前1550-1070年),它可能是士兵和戰(zhàn)士在沖突時(shí)期使用的致命武器。因?yàn)槊^揭示了古埃及的武器和技術(shù),所以是一件重要的文物,而且矛頭的質(zhì)量和設(shè)計(jì)顯示了當(dāng)時(shí)高超的金屬加工和武器裝備技術(shù)。來(lái)自埃及 Al-Qala 軍事博物館的鋼制矛頭是一件能夠揭示我們之前文化的重要?dú)v史文物,下表1提供了對(duì)埃及Al-Qala軍事博物館的同一個(gè)考古鋼矛研究的總結(jié)。

     

    圖 1. (a) 處理前受到腐蝕產(chǎn)物侵蝕的矛頭組 (b) 所研究矛頭的尺寸

     

     

     

     

     

    腐爛特性(如厚層紅褐色腐蝕產(chǎn)物的存在)會(huì)對(duì)所選文物產(chǎn)生影響,正如圖 1b 所示。我們對(duì)矛頭進(jìn)行了調(diào)查,以了解它們使用了哪種合金鋼、是如何制造的以及在制造過(guò)程中留下了哪些腐蝕產(chǎn)物。并且使用金相顯微鏡、掃描電子顯微鏡(SEM)和能量色散光譜儀(EDS)、碳/硫分析儀和X射線衍射(XRD)實(shí)現(xiàn)這一目標(biāo)。我們?cè)贠LYMPUS-PMTVC2D03043JAPAN金相顯微鏡的幫助下,可以無(wú)需先行蝕刻和拋光,即可對(duì)其中一個(gè)矛頭的橫截面進(jìn)行了檢查29


    為了進(jìn)一步了解材料,我們還使用了配備能譜儀(EDS)的掃描電子顯微鏡(SEM)對(duì)同一材料進(jìn)行了詳細(xì)研究。此外我們用碳/硫分析儀 ELTRA CS-2000確定矛頭中所用鋼合金的碳/硫比例。最后利用D8 高級(jí) X 射線衍射儀 X (德國(guó)布魯克公司)對(duì)鋼表面的腐蝕產(chǎn)物進(jìn)行XRD分析。

     

     

     

     

     

    2.1.2 媒介

     

    在這種情況下,選擇的腐蝕介質(zhì)是模擬海水條件的3.5% NaCl溶液,這是為了使研究與古代鋼制品(如矛頭)可能遇到的現(xiàn)實(shí)情況保持一致。雖然ASTM D1384-87溶液通常用于模擬大氣腐蝕條件,但我們的目標(biāo)是研究可能暴露在海水或海岸環(huán)境中的相關(guān)的文物且更具侵蝕性的腐蝕環(huán)境。古代文物通常暴露在各種復(fù)雜的歷史環(huán)境條件下,包括埋葬,陸地暴露,以及在某些情況下的海洋暴露。


    我們通過(guò)將矛頭置于3.5% NaCl溶液中,試圖模擬在漫長(zhǎng)的歷史中可能影響這些文物的惡劣條件,尤其是當(dāng)它們與海洋或海岸活動(dòng)有關(guān)時(shí)。

     

    在海水模擬環(huán)境中研究矛頭的腐蝕行為,可以深入了解無(wú)暇聚苯胺涂層在比典型大氣腐蝕更具挑戰(zhàn)性的條件下的有效性。這種方法使我們能夠評(píng)估涂層對(duì)保護(hù)具有不同歷史和暴露概況的文物的適用性。一般來(lái)說(shuō),選擇3.5% NaCl介質(zhì)是為了確保我們的研究與潛在的海洋或沿海歷史文物的相關(guān)性,并評(píng)估涂層在更具侵略性的腐蝕環(huán)境中的性能。

     

     

     

     

     

    2.2方法

     

     

     

     

     

    2.2.1 腐蝕技術(shù)

     

     

     

     

     

    我們使用一個(gè)普通的三電極Pyrex玻璃電池和連接到Autolab計(jì)算機(jī)的Autolab電位儀/恒流儀PGSTAT302N進(jìn)行所需的電化學(xué)測(cè)量。將銀/氯化銀參比電極、鉑箔對(duì)電極和1cm2低碳鋼工作電極分別浸入有聚苯胺保護(hù)層和沒(méi)有聚苯胺保護(hù)層的3.5%氯化鈉中。隨后,我們?cè)谂cOCP設(shè)備相同的實(shí)驗(yàn)裝置中測(cè)量了電化學(xué)阻抗譜(EIS)和動(dòng)電位極化。并且通過(guò)EIS 測(cè)量后獲得的電位極化曲線,研究了聚苯胺濃度對(duì)極化的影響。

     

    在電位范圍為-1600~200mV,速率為1mVs−1的且室溫條件下,我們對(duì)不同濃度的聚苯胺進(jìn)行極化測(cè)量,而且通過(guò)分析陽(yáng)極和陰極線性Tafel分支的交會(huì)點(diǎn),可以確定腐蝕系統(tǒng)的腐蝕電流密度和腐蝕電位。此外,我們用Nova 1.10程序?qū)⑺凶杩箶?shù)據(jù)擬合到適當(dāng)?shù)牡刃щ娐泛螅褂肨afel外推技術(shù)確定化合物的屏蔽效果。在電化學(xué)分析之后,我們利用掃描電子顯微鏡(SEM)和能量色散x射線光譜儀(EDS)對(duì)文物的低碳鋼表面進(jìn)行了形態(tài)和化學(xué)表征。最后。我們使用了具有Cu-K輻射的X射線衍射儀和X射線熒光NITON/XL8138來(lái)研究雕塑腐蝕產(chǎn)物樣品中元素組成。這些評(píng)估是經(jīng)過(guò)深思熟慮的30

     

     

     

     

     

    2.2.2 實(shí)驗(yàn)設(shè)置、程序和測(cè)試方案

     

     

     

     

     

    在3.5% NaCl(氯化鈉)溶液中,對(duì)矛頭進(jìn)行腐蝕測(cè)試需要明確的實(shí)驗(yàn)設(shè)置、步驟和測(cè)試方案。下面將詳細(xì)概述如何進(jìn)行這種類型的腐蝕測(cè)試。

     

    實(shí)驗(yàn)設(shè)置和樣品收集:實(shí)驗(yàn)設(shè)置從材料和設(shè)備的準(zhǔn)備開(kāi)始。首先,我們對(duì)即將進(jìn)行測(cè)試的考古鋼矛頭進(jìn)行模擬。隨后,將3.5g氯化鈉溶解于100ml蒸餾水中,在玻璃燒杯中制備成3.5% NaCl溶液。然后,我們組裝腐蝕測(cè)試的關(guān)鍵部件(電化學(xué)電池),這種電池通常包括一個(gè)工作電極(矛頭)、一個(gè)參比電極(Ag/AgCl)和一個(gè)對(duì)電極(鉑電極)。為了控制和測(cè)量電化學(xué)參數(shù),我們采用了恒電位儀/恒流儀并且使用電化學(xué)軟件用來(lái)監(jiān)控恒電位儀/恒流儀和收集數(shù)據(jù)。此外,我們還使用重物或夾子將矛頭固定在電化學(xué)電池內(nèi)所需的位置,而且確保樣品表面沒(méi)有污染物、油或殘留物,這是樣品制備的重要步驟。

     

    在我們的研究中,我們從埃及Al-Qala軍事博物館購(gòu)買了鋼制矛頭,由于這些矛頭具有重要考古意義的文物,所以需要保存和防止它們腐蝕。從這些矛頭中采集樣本時(shí)需要遵循標(biāo)準(zhǔn)程序,以維護(hù)文物的完整性。我們選中軍事博物館收藏的一組可以追溯到古埃及新王國(guó)時(shí)代(約公元前1550-1070年)且具有重要?dú)v史意義的鋼制矛頭進(jìn)行分析。為了表征樣品,我們選擇能夠代表矛頭整體狀況的區(qū)域,并對(duì)鋼材表面的小塊區(qū)域進(jìn)行了精心制備。

     

    我們采用適當(dāng)?shù)姆椒◤倪@些制備好的區(qū)域中收集樣品,并使用掃描電子顯微鏡(SEM)和能量色散X射線光譜儀(EDX)檢查表面的小部分,從而提供有關(guān)化學(xué)成分和微觀結(jié)構(gòu)的信息。然后將收集到的樣品進(jìn)行了各種表征技術(shù),包括X射線衍射(XRD)、SEM和EDX,以深入了解其化學(xué)成分和微觀結(jié)構(gòu),這些技術(shù)能夠評(píng)估矛頭的現(xiàn)狀,并確認(rèn)任何腐蝕產(chǎn)物。

     

    在初步表征之后,我們進(jìn)行了腐蝕測(cè)試,將矛頭浸入3.5%的NaCl溶液中以模擬腐蝕環(huán)境,從而評(píng)估聚苯胺涂層保護(hù)矛頭的有效性。在整個(gè)樣品收集過(guò)程中,我們都非常謹(jǐn)慎以確保采集過(guò)程不會(huì)損害矛頭,從而保持矛頭的完整性。最后,我們認(rèn)識(shí)到維護(hù)這些文物的歷史和考古價(jià)值的重要性,因此進(jìn)行了科學(xué)分析,以加強(qiáng)對(duì)這些文物的保護(hù)。

     

     

     

     

     

    2.2.3 實(shí)驗(yàn)程序

     

    我們將制備好的樣品浸入3.5%的NaCl溶液中,待系統(tǒng)在特定時(shí)間內(nèi)達(dá)到平衡后,進(jìn)行開(kāi)路電位(OCP)測(cè)量。隨后,我們使用恒電位儀/恒流儀記錄OCP。對(duì)于電化學(xué)阻抗譜(EIS):在一定頻率范圍內(nèi)向工作電極施加一個(gè)小的擾動(dòng)信號(hào)(如正弦電壓),以測(cè)量每個(gè)頻率下的阻抗。在EIS實(shí)驗(yàn)后,分析得到的阻抗數(shù)據(jù)以提取有關(guān)腐蝕特性的信息,包括極化電阻和電容。在動(dòng)電位極化(PDP)實(shí)驗(yàn)中,將工作電極的電位從初始電位掃至最終電位,并測(cè)量每個(gè)電位點(diǎn)的電流響應(yīng),從而得到極化曲線用于測(cè)定腐蝕速率、腐蝕電位和其他相關(guān)的電化學(xué)參數(shù)。我們還使用專業(yè)軟件對(duì)電化學(xué)數(shù)據(jù)進(jìn)行分析,以確定腐蝕速率、極化電阻和其他電化學(xué)參數(shù)。

     

    此外,我們對(duì)各種測(cè)試和方法的結(jié)果進(jìn)行了比較分析,以全面了解矛頭的腐蝕行為,并且提供了實(shí)驗(yàn)的具體細(xì)節(jié),識(shí)別基于樣品類型、可用的電化學(xué)設(shè)備和研究目標(biāo)等因素的潛在變化。值得注意的是,我們還討論了觀察到的腐蝕機(jī)制以及 NaCl 溶液對(duì)模擬樣品耐腐蝕性的影響,而且將與保存或保護(hù)矛頭腐蝕有關(guān)的任何觀察或發(fā)現(xiàn)也納入分析中。

     

     

     

     

     

    2.3 保護(hù)程序

     

     

     

     

     

    使用聚苯胺涂層對(duì)古代鋼制矛頭進(jìn)行保存和防腐保護(hù)是一項(xiàng)細(xì)致而高效的工作。以下是這種保存方法所涉及的關(guān)鍵步驟和程序。

     

     

     

     

     

    2.3.1材料與設(shè)備


    古老的鋼制矛頭、所需濃度的聚苯胺溶液(例如10 ppm,、25 ppm、50 ppm或100 ppm)、適合浸泡的容器手套和防護(hù)裝備,干凈的無(wú)絨布及通風(fēng)的工作區(qū)。

     

    程序:

     

    準(zhǔn)備矛頭仔細(xì)檢查每一個(gè)古老的鋼制矛頭,以評(píng)估其狀況和腐蝕程度,并且記錄任何可見(jiàn)的損壞,如生銹或表面污染物。如有必要,使用軟毛刷或布輕輕地進(jìn)行清潔,以清除松散的碎片或污垢,但是避免使用可能損壞文物的侵略性清潔方法。

     

    聚苯胺濃度的選擇:根據(jù)每個(gè)鋼矛頭的具體需要,確定合適的涂層聚苯胺濃度。濃度可能會(huì)根據(jù)文物的狀況和腐蝕敏感性而變化。

     

    浸泡在聚苯胺溶液中:準(zhǔn)備裝滿所選聚苯胺溶液的容器,將每個(gè)鋼矛頭浸入到聚苯胺溶液中,并且確保它們完全被淹沒(méi)。浸泡時(shí)間可根據(jù)所需的保護(hù)級(jí)別而有所不同。需要確保矛頭是懸掛的,而不是靠在容器的底部或側(cè)面,以防止涂層不均勻。

     

    監(jiān)測(cè)和干燥:在浸泡過(guò)程中定期檢查文物,以監(jiān)測(cè)進(jìn)展。一旦達(dá)到所需的涂層時(shí)間后,小心地將矛頭從聚苯胺溶液中取出,讓矛頭在通風(fēng)良好的地方風(fēng)干,但是避免將它們暴露在陽(yáng)光直射或極端溫度下。

     

    檢查和附加涂層(如有必要):在干燥之后,評(píng)估聚苯胺涂層的質(zhì)量和覆蓋率。如果需要達(dá)到所需的保護(hù)水平,可再涂一層。為了獲得最佳效果,可能需要重復(fù)浸泡和干燥的步驟。

     

    記錄和存儲(chǔ):記錄保存過(guò)程,包括聚苯胺濃度、浸泡時(shí)間及任何有關(guān)涂層效果的觀察。將保存好的鋼制矛頭存放在溫度和濕度穩(wěn)定的可控環(huán)境中,以防止進(jìn)一步腐蝕。此外,也可以使用帶有穿孔的聚乙烯袋創(chuàng)造一個(gè)可控的微環(huán)境。

     

    定期檢查和維護(hù):定期檢查保存的矛頭是否有腐蝕或變質(zhì)的跡象。如有必要,可重復(fù)保護(hù)程序,以維持涂層的保護(hù)。

     

    2.3.2 重要的注意事項(xiàng)

     

    保護(hù)程序應(yīng)由受過(guò)培訓(xùn)的文物保護(hù)人員或具有文物保護(hù)專業(yè)知識(shí)的專業(yè)人員執(zhí)行。聚苯胺的濃度和浸泡時(shí)間的選擇應(yīng)基于仔細(xì)評(píng)估,如果可能的話,應(yīng)咨詢專家。我們應(yīng)該控制保存條件,包括溫度、濕度和光照,以防止進(jìn)一步腐蝕。聚苯胺涂層保護(hù)古代鋼制矛頭是一種非侵入性的有效方法,可確保其長(zhǎng)久保存,供后人研究和欣賞。

     

    -未完待續(xù),下篇敬請(qǐng)期待-

    #參考文獻(xiàn)(滑動(dòng)查看):

     

    1. Frank, H. Good year, archaeological site science. pp 131–132 (1988).

    2. Yang Sook, K. & Istvan, S. Cleaning of corroded iron artifacts using pulsed TEA CO2 and Nd: YAG lasers. J. Cult. Herit. 4, 129–133 (2003).

    3. Hefter, G., North, A. & Tan, S. Organic corrosion inhibitors in neutral solutions; part-I Inhibition of steel, copper, and aluminum by straight chain carboxylates. Corrosion 53(8), 657–667. https://doi.org/10.5006/1.3290298 (1997).

    4. Alkharafi, F. M., El-Shamy, A. M. & Ateya, B. G. Comparative effect of tolytriazole and benzotriazole against sulfide attack on copper. Int. J. Electrochem. Sci. 4, 1351–1364 (2009).

    5. Mirambet, F., Reguer, S., Rocca, E., Hollner, S. & Testemale, D. A. Complementary set of electrochemical and X-ray synchrotron techniques to determine the passivation mechanism of iron treated in a new corrosion inhibitor solution specifically developed

    for the preservation of metallic artifacts. Appl. Phys. A 99, 341–349 (2010).

    6. Sherif, E. M., Abbas, A. T., Gopi, D. & El-Shamy, A. M. Corrosion and corrosion inhibition of high strength low alloy steel in 2.0 M sulfuric acid solutions by 3-amino-1,2,3-triazole as a corrosion inhibitor. J. Chem. https://doi.org/10.1155/2014/538794 (2014).

    7. Bethencourt, M., Botana, F. J., Calvino, J. J., Marcos, M. & Rodriguez-Chacon, M. A. Lanthanide compounds as environmentally friendly corrosion inhibitors of aluminum alloys: A review. Corros. Sci. 40(11), 1803–1819. 00077-8 (1998).

    8. Sabirneeza, A. A. F., Geethanjali, R. & Subhashini, S. Polymeric corrosion inhibitors for iron and its alloys: A review. Chem. Eng. Commun. 202(22), 232–244. https://doi.org/10.1080/00986445.2014.934448 (2015).

    9. Sherif, E. M., Abbas, A. T., Halfa, H. & El-Shamy, A. M. Corrosion of high strength steel in concentrated sulfuric acid pickling solutions and its inhibition by 3-amino-5-mercapto-1, 2, 3-triazole. Int. J. Electrochem. Sci 10, 1777–1791 (2015).

    10. Dillmann, P., Beranger, G., Piccardo, P. & Matthiessen, H. Corrosion of Metallic Heritage Artefacts: Investigation, Conservation, and Prediction of Long-Term Behavior (Elsevier, 2014).

    11. El-Shamy, A. M., Shehata, M. F. & Ismail, A. I. M. Effect of moisture contents of bentonitic clay on the corrosion behavior of steel pipelines. J. Appl. Clay Sci. 114, 461–466. https://doi.org/10.1016/j.clay.2015.06.041 (2015).

    12. Singh, P., Srivastava, V. & Quraishi, M. A. Novel quinoline derivatives as green corrosion inhibitors for mild steel in acidic medium: electrochemical, SEM, AFM, and XPS studies. J. Mol. Liquids 216(1), 164–173. https://doi.org/10.1016/j.molliq.2015.12.086 (2016).

    13. Farag, H. K., El-Shamy, A. M., Sherif, E. M. & El Abedin, S. Z. Sonochemical Synthesis of Nanostructured ZnO/Ag Composites in an Ionic Liquid. Zeitschrift für Physikalische Chemie 230(12), 1733–1744. https://doi.org/10.1515/zpch-2016-0777 (2016).

    14. Elsayed, E. M., Eessaa, A. K., Rashad, M. M. & El-Shamy, A. M. Preparation and characterization of ZnO thin film on anodic Al2O3as a substrate for several applications. Egypt. J. Chem. 65(10), 119–129. https://doi.org/10.21608/ejchem.2022.110382.5021 (2022).

    15. El-Shamy, A. M., Farag, H. K. & Saad, W. M. Comparative study of removal of heavy metals from industrial wastewater using clay and activated carbon in batch and continuous flow systems. Egypt. J. Chem. 60(6), 1165–1175. https://doi.org/10.21608/ejchem.2017.1606.1128 (2017).

    16. Liu, A. M., Ren, X. F., Wang, B., Zhang, J., Yang, P. X., Zhang, J. Q., An, M. Z. Complexing agent study via computational chemistry for environmentally friendly silver (2014).

    17. El-Shamy, A. M., Shehata, M. F., Metwally, H. I. M. & Melegy, A. Corrosion and corrosion inhibition of steel pipelines in montmorilonitic soil filling material. Silicon 10(6), 2809–2815. https://doi.org/10.1007/s12633-018-9821-4 (2017).

    18. Sanatkumar, B., Nayak, J. & Shetty, N. Influence of 2-(4-chlorophenyl)-2-oxoethyl benzoate on the hydrogen evolution and corrosion inhibition of 18 Ni 250 grade weld aged maraging steel in 1.0 M sulfuric acid medium. Int. J. Hydrog. Energy 37(11), 9431–9442. https://doi.org/10.1016/j.ijhydene.2012.02.165 (2012).

    19. Giumlia, M. A., Williams, A. Studi metallografici ‘in situ’ sull’armatura della Basilica della Beata Vergine delle Grazie, Udine, Aquileia Nostra, LXXV Udine, Aquileia, 394–422 (2004).

    20. El-Shamy, A. M. Control of corrosion caused by sulfate-reducing bacteria. In Microbes in process, pp. 337–362 (2014).

    21. Scharff, W. & Huesmann, I. A. Accelerated decay of metal soil finds due to soil pollution. Metal 95, 17–20 (1997).

    22. Ateya, B. G., Al Kharafi, F. M., El-Shamy, A. M., Abdalla, R. M. Electrochemical oxidation of hydrogen sulfide in geothermal fluids under high temperature and pressure. In ACS National Meeting Book of Abstracts 2008 236th National Meeting and Exposition of the American Chemical Society, ACS 200817 August 2008 through 21 August (2008).

    23. Ateya, B. G., Alkharafi, F. M., El-Shamy, A. M., Saad, A. Y. & Abdalla, R. M. Electrochemical desulphurization of geothermal fluids under high temperature and pressure. J. Appl. Electrochem. 39, 383–389. https://doi.org/10.1007/s10800-008-9683-3 (2009).

    24. Abdelshafeek, K. A., Abdallah, W. E., Elsayed, W. M., Eladawy, H. A. & El-Shamy, A. M. Vicia faba peel extracts bearing fatty acids moieties as a cost-effective and green corrosion inhibitor for mild steel in marine water: Computational and electrochemical

    studies. Sci. Rep. 12(1), 20611. https://doi.org/10.1038/s41598-022-24793-3 (2022).

    25. Abd Elkarim, A. M., El-Shamy, A. M., Megahed, M. M. & Kalmouch, A. Evaluation of the inhibition efficiency of a new inhibitor on leaded bronze Statues from Yemen. Arctic J. 71(1), 2–33 (2018).

    26. Cano, E. et al. Electrochemical characterization of organic coatings for protection of historic steel artifacts. J. Solid State Electr. 14, 453 (2010).

    27. Eessaa, A. K., El-Shamy, A. M. & Reda, Y. Fabrication of commercial nanoporous alumina by low voltage anodizing. Egypt. J. Chem.61(1), 175–185. https://doi.org/10.21608/ejchem.2017.2189.1175 (2018).

    28. Satri, V. Green Corrosion Inhibitors: Theory and Practice (Wiley, 2011).

    29. El-Shamy, A. M., Abdelfattah, I., Elshafie, O. I. & Shehata, M. F. Potential removal of organic loads from petroleum wastewater and its effect on the corrosion behavior of municipal networks. J. Environ. Manag. 219, 325–331. https://doi.org/10.1016/j.jenvm

    an.2018.04.074 (2018).

    30. Elban, W. L., Borst, M. A., Roubachewsky, N. M., Kemp, E. L. & Tice, P. C. Metallurgical assessment of historic wrought iron: US custom house, wheeling, West Virginia. Assoc. Preserv. Technol. 29, 27–34 (1998).

    31. Bramfitt, B. L., Benscoter, A.O. Metallographer’s guide: Practices and procedures for irons and steels, USA (2002).

    32. Bussell, M. Use of iron and steel in buildings. In Structures & Construction in Historic Building Conservation (ed. Forsyth, M.) 173–191 (Blackwell Publishing Ltd, 2007).

    33. Reda, Y., El-Shamy, A. M. & Eessaa, A. K. Effect of hydrogen embrittlement on the microstructures of electroplated steel alloy 4130. Ain Shams Eng. J. 9(4), 2973–2982. https://doi.org/10.1016/j.asej.2018.08.004 (2018).

    34. Al-Otaibi, M. S. et al. Corrosion inhibitory action of some plant extracts on the corrosion of mild steel in acidic media. Arab. J. Chem. 7, 340–346 (2014).

    35. El-Kashef, E., El-Shamy, A. M., Abdo, A., Gad, E. A. M. & Gado, A. A. Effect of magnetic treatment of potable water in looped and dead-end water networks. Egypt. J. Chem. 62(8), 1467–1481. https://doi.org/10.21608/ejchem.2019.7268.1595 (2019).

    36. Zajec, B., Leban, M. B., Lenart, S., Gavin, K. & Legat, A. Electrochemical impedance and electrical resistance sensors for the evaluation of anticorrosive coating degradation. Corros. Rev. 35, 65–74 (2017).

    37. Abbas, M. A., Zakaria, K., El-Shamy, A. M. & El Abedin, S. Z. Utilization of 1-butylpyrrolidinium chloride ionic liquid as an ecofriendly corrosion inhibitor and biocide for oilfield equipment: combined weight loss, electrochemical and SEM studies Z. Phys. Chem. 235(4), 377–406. https://doi.org/10.1515/zpch-2019-1517 (2019).

    38. Xia, D. H. et al. Assessing atmospheric corrosion of metals by a novel electrochemical sensor combining with a thin insulating net using electrochemical noise technique. Sens. Actuat. B Chem. 252, 353–358 (2017).

    39. Shehata, M. F., El-Shafey, S., Ammar, N. A. & El-Shamy, A. M. Reduction of Cu+2 and Ni+2 ions from wastewater using mesoporous adsorbent: Effect of treated wastewater on corrosion behavior of steel pipelines. Egypt. J. Chem. 62(9), 1587–1602. https://doi.org/10.21608/ejchem.2019.7967.1627 (2019).

    40. Scott, D. A. & Eggert, G. Iron and Steel in Art: Corrosion, Colorants, Conservation 145–147 (Archetype Publications, 2009).

    41. El-Shamy, A. M., Soror, T. Y., El-Dahan, H. A., Ghazy, E. A. & Eweas, A. F. Microbial corrosion inhibition of mild steel in salty water environment. Mater. Chem. Phys. 114(1), 156–159. https://doi.org/10.1016/j.matchemphys.2008.09.003 (2009).

    42. Zohdy, K. M., El-Shamy, A. M., Gad, E. A. M. & Kalmouch, A. The corrosion inhibition of (2Z,2′Z)-4,4′-(1,2-phenylene bis (azanediyl)) bis (4-oxobut-2-enoic acid) for carbon steel in acidic media using DFT. Egypt. J. Pet. 28(4), 355–359. https://doi.org/10.1016/j.ejpe.2019.07.001 (2019).

    43. Ma, C. et al. Electrochemical noise monitoring of the atmospheric corrosion of steels: Identifying corrosion form using wavelet analysis. Corros. Eng. Sci. Technol. 52, 432–440 (2017).

    44. Reda, Y., El-Shamy, A. M., Zohdy, K. M. & Eessaa, A. K. Instrument of chloride ions on the pitting corrosion of electroplated steel alloy 4130. Ain Shams Eng. J. 11, 191–199. https://doi.org/10.1016/j.asej.2019.09.002 (2020).

    45. Cano, E., Lafuente, D. Corrosion inhibitors for the preservation of metallic heritage artifacts. In Corrosion and conservation of cultural heritage metallic artefacts; Elsevier: New York, NY, USA, 570–594 (2013).

    46. Reda, Y., Zohdy, K. M., Eessaa, A. K. & El-Shamy, A. M. Effect of plating materials on the corrosion properties of steel alloy 4130. Egypt. J. Chem. 63(2), 579–597. https://doi.org/10.21608/ejchem.2019.11023.1706 (2020).

    47. Mohamed, W. A. & Mohamed, N. M. Testing coatings for enameled metal artifacts. Int. J. Conserv. Sci. 8, 15–24 (2017).

    48. Mohamed, O. A., Farghali, A. A., Eessaa, A. K. & El-Shamy, A. M. Cost-effective and green additives of pozzolanic material derived from the waste of alum sludge for successful replacement of Portland cement. Sci. Rep. 12(1), 20974. https://doi.org/10.1038/s41598-022-25246-7 (2022).

    49. Shehata, M. F., El-Shamy, A. M., Zohdy, K. M., Sherif, E. S. M. & El Abedin, S. Z. Studies on the antibacterial influence of two ionic liquids and their corrosion inhibition performance. Appl. Sci. 10(4), 1444. https://doi.org/10.3390/app10041444 (2020).

    50. El-Shamy, A. M., El-Hadek, M. A., Nassef, A. E. & El-Bindary, R. A. Optimization of the influencing variables on the corrosion property of steel alloy 4130 in 3.5 wt.% NaCl solution. J. Chem. https://doi.org/10.1155/2020/9212491 (2020).

    51. Rodgers, B. A. The Archaeologist’s Manual for Conservation 186–200 (Kluwer Academic/Plenum Publishers, 2004).

    52. Devanathan, M. A. V. & Tilak, B. V. K. The structure of the electrical double layer at the metal–solution interface. Chem. Rev. 65, 635–684 (1965).

    53. Parsons, R. Electrical double layer: Recent experimental and theoretical developments. Chem. Rev. 90, 813–826 (1990).

    54. Kolb, D. M., Rath, D. L., Wille, R. & Hansen, W. N. An ESCA study on the electrochemical double layer of emersed electrodes.

    Ber. Bunsenges. Phys. Chem. 87, 1108–1113 (1983).

    55. Brown, M. A. et al. Determination of surface potential and electrical double-layer structure at the aqueous electrolyte–nanoparticle interface. Phys. Rev. X 6, 011007 (2016).

    56. El-Shamy, A. M., El-Hadek, M. A., Nassef, A. E. & El-Bindary, R. A. Box-Behnken design to enhance the corrosion resistance of high strength steel alloy in 3.5 wt% NaCl solution. Mor. J. Chem. 8(4), 788–800. https://doi.org/10.48317/IMIST.PRSM/morjc

    hem-v8i4.21594 (2020).

    57. Mills, D., Picton, P. & Mularczyk, L. Developments in the electrochemical noise method (ENM) to make it more practical for assessment of anti-corrosive coatings. Electrochim. Acta 124, 199–205 (2014).

    58. El-Shamy, A. M. A review on biocidal activity of some chemical structures and their role in mitigation of microbial corrosion. Egypt. J. Chem. 63(12), 5251–5267. https://doi.org/10.21608/ejchem.2020.32160.2683 (2020).

    59. ASTM b499–09, Standard Test Method for Measurement of Coating Thicknesses by the Magnetic Method: Nonmagnetic Coatings on Magnetic Basis Metals; ASTM International: West Conshohocken, PA, USA (2014).

    60. Megahed, M. M., Youssif, M. & El-Shamy, A. M. Selective formula as a corrosion inhibitor to protect the surfaces of antiquities made of leather-composite brass alloy. Egypt. J. Chem. 63(12), 5269–5287. https://doi.org/10.21608/ejchem.2020.41575.2841 (2020).

    61. ASTM e104–02, Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions; ASTM International: West Conshohocken, PA, USA (2012).

    62. Megahed, M. M., Abdel Bar, M. M., Abouelez, E. S. M. & El-Shamy, A. M. Polyamide coating as a potential protective layer against corrosion of iron artifacts. Egypt. J. Chem. 64(10), 5693–5702. https://doi.org/10.21608/ejchem.2021.70550.3555 (2021).

    63. Mabbutt, S., Mills, D. J. & Woodcock, C. P. Developments of the electrochemical noise method (ENM) for more practical assessment of anti-corrosion coatings. Prog. Org. Coat. 59, 192–196 (2007).

    64. Zohdy, K. M., El-Sherif, R. M. & El-Shamy, A. M. Corrosion and passivation behaviors of tin in aqueous solutions of different pH. J. Bio Tribo-Corros. 7(2), 1–7. https://doi.org/10.1007/s40735-021-00515-6 (2021).

    65. Pham, T. D. From fuzzy recurrence plots to scalable recurrence networks of time series. EPL-Europhys. Lett. 118, 20003 (2017).

    66. El-Shamy, A. M. & Abdel Bar, M. M. Ionic liquid as water soluble and potential inhibitor for corrosion and microbial corrosion for iron artifacts. Egypt. J. Chem. 64(4), 1867–1876. https://doi.org/10.21608/ejchem.2021.43786.2887 (2021).

    67. Cazares-Ibanez, E., Vazquez-Coutino, G. A. & Garcia-Ochoa, E. Application of recurrence plots as a new tool in the analysis of electrochemical oscillations of copper. J. Electroanal. Chem. 583, 17–33 (2005).

    68. Zohdy, K. M., El-Sherif, R. M., Ramkumar, S. & El-Shamy, A. M. Quantum and electrochemical studies of the hydrogen evolution findings in corrosion reactions of mild steel in acidic medium. Upstream Oil Gas Technol. 6, 100025. https://doi.org/10.1016/j.upstre.2020.100025 (2021).

    69. Wadsworth, F. B., Heap, J. M. & Dingwell, D. B. Friendly fire: Engineering a fort wall in the iron age. J. Archaeol. Sci. 67, 7–13 (2016).

    70. Gad, E. A. & El-Shamy, A. M. Mechanism of corrosion and microbial corrosion of 1,3-dibutyl thiourea using the quantum chemical calculations. J. Bio Tribo-Corros. 8, 71. https://doi.org/10.1007/s40735-022-00669-x (2022).

    71. Oudbashi, O., Emami, S. M., Ahmadi, H. & Davami, P. Micro-stratigraphical investigation on corrosion layers in ancient bronze artefacts by scanning electron microscopy energy dispersive spectrometry and optical microscopy. Herit. Sci. 1, 21–31 (2013).

    72. Abbas, M. A., Ismail, A. S., Zakaria, K., El-Shamy, A. M. & El Abedin, S. Z. Adsorption, thermodynamic, and quantum chemical investigations of an ionic liquid that inhibits corrosion of carbon steel in chloride solutions. Sci. Rep. 12, 12536. https://doi.org/10.1038/s41598-022-16755-6 (2022).

    73. Abdel-Karim, A. M., El-Shamy, A. M. & Reda, Y. Corrosion and stress corrosion resistance of Al Zn alloy 7075 by nano-polymeric coatings. J. Bio- Tribo-Corros. 8, 57. https://doi.org/10.1007/s40735-022-00656-2 (2022).

    74. El-Shamy, A. M., Cathodic protection in the oil and gas industries. In Corrosion and Materials in the oil and gas industry, pp. 489–510 (2016).

    75. Jegdic, B., Radovanavic, S. P., Ristic, S. & Alil, A. Corrosion Processes nature and composition of corrosion products on iron artefacts of weaponry. Sci. Tech. Rev. 61(2), 50–56 (2011).

    76. Abdel-Karim, A. M. & El-Shamy, A. M. A review on green corrosion inhibitors for protection of archeological metal artifacts. J. Bio- Tribo-Corros. 8, 35. https://doi.org/10.1007/s40735-022-00636-6 (2022).

    77. Webber, C. L. Jr. Recurrence Quantification Analysis: Theory and Best Practices (Springer, 2014).

    78. Landolt, D. Corrosion and Surface Chemistry of Metals, Lausanne, Switzerland (ISBN 978-2-940222-11-7), 119–179 (2007).

    79. Mouneir, S. M., El-Hagrassi, A. M. & El-Shamy, A. M. A review on the chemical compositions of natural products and their role in setting current trends and future goals Egypt. J. Chem. 65(5), 491–506. https://doi.org/10.21608/ejchem.2021.95577.4486 (2022).

    80. Loeper-Attia, M. A. A Proposal to Describe Reactivated Corrosion of Archaeological Iron Objects. In Corrosion of Metallic Heritage Artefacts: Investigation, Conservation, and Prediction For Long-Term Behavior (eds Dillmann, P. et al.) 190–202 (Woodhead Publishing, 2007).

    81. Reda, Y., Yehia, H. M. & El-Shamy, A. M. Microstructural and mechanical properties of Al-Zn alloy 7075 during RRA and triple aging. Egypt. J. Pet. 31, 9–13. https://doi.org/10.1016/j.ejpe.2021.12.001 (2022).

    82. Branzoi, F., Branzoi, V. & Licu, C. Corrosion inhibition of carbon steel in cooling water systems by new organic polymers as green inhibitors. Mater. Corros. Werkstoffe Korrosion 65(6), 637–647. https://doi.org/10.1002/maco.201206579 (2014).

    83. Elsayed, E. M., Eessaa, A. K., Abdelbasir, S. M., Rashad, M. M. & El-Shamy, A. M. El-Fabrication, characterization, and monitoring the propagation of nanocrystalline ZnO thin film on ITO substrate using electrodeposition technique. Egypt. J. Chem. 66(2), 33–43. https://doi.org/10.21608/ejchem.2022.126134.5595 (2023).

    84. El-Shamy, A. M. & Mouneir, S. M. Medicinal materials as eco-friendly corrosion inhibitors for industrial applications: A review. J. Bio Tribo-Corrosion 9(1), 3. https://doi.org/10.1007/s40735-022-00714-9 (2023).

    85. Zohdy, K. M., El-Sherif, R. M. & El-Shamy, A. M. Effect of pH fluctuations on the biodegradability of nanocomposite mg-alloy in simulated bodily fluids. Chem. Paper 77(3), 1317–1337. https://doi.org/10.1007/s11696-022-02544-y (2023).

    86. Alwaleed, R. A., Megahed, M. M., Elamary, R. B., El-Shamy, A. M. & Ali, Y. S. Remediation mechanism of microbial corrosion for iron artifacts buried in soil by using allium sativum (garlic extract) as a natural biocide. Egypt. J. Chem. 66(6), 291–308. https://doi.org/10.21608/ejchem.2022.158454.6850 (2023).

    87. Eessaa, A. K. & El-Shamy, A. M. Review on fabrication, characterization, and applications of porous anodic aluminum oxide films with tunable pore sizes for emerging technologies. Microelectr. Eng. 279, 112061. https://doi.org/10.1016/j.mee.2023.112061 (2023).

    88. Eessaa, A. K., Elkady, O. A. & El-Shamy, A. M. Powder metallurgy as a perfect technique for preparation of Cu-TiO2 composite by identifying their microstructure and optical properties. Sci. Rep. 13(1), 7034. https://doi.org/10.1038/s41598-023-33999-y (2023).

    89. Ghazy, E. A., Abdel Ghany, N. A. & El-Shamy, A. M. Comparative study of cetyl trimethyl ammonium bromide formaldehyde, and isobutanol against corrosion and microbial corrosion of mild steel in chloride media. J. Bio. Tribo-Corrosion 9, 64. https://doi.org/10.1007/s40735-023-00782-5 (2023).

    90. Abdelshafeek, K. A. & El-Shamy, A. M. Review on glucosinolates: Unveiling their potential applications as drug discovery leads in extraction, isolation, biosynthesis, biological activity, and corrosion protection. Food Biosci. 56, 103071. https://doi.org/10.1016/j.fbio.2023.103071 (2023).

    91. Shehata, M. F. & El-Shamy, A. M. Hydrogen-based failure in oil and gas pipelines a review. Gas Sci. Eng. 115, 204994. https://doi.org/10.1016/j.jgsce.2023.204994 (2023).

    92. Elashery, N. H., Megahed, M. M., El-Shamy, A. M. & Saleh, S. M. Archaeometric characterization and conservation of bronze patina on archaeological axe head in military museum, Cairo. J. Archaeol. Tour. Must 2(1), 23–33 (2023).

    93. Selwyn, L. Metals and Corrosion: A Handbook for Conservation Professional (Canadian Conservation Institute, 2004).

    94. Schaefer, K. & Mills, D. J. The application of organic coatings in the conservation of archaeological objects excavated from the sea. Prog. Org. Coat. 102, 99–106 (2017).

    95. Kiele, E. et al. Methyl-modified hybrid organic-inorganic coatings for the conservation of copper. J. Cult. Herit. 15, 242–249 (2014).

    96. Hollner, S., Mirambet, F., Rocca, E. & Reguer, S. Evaluation of new non-toxic corrosion inhibitors for conservation of iron artifacts. Corros. Eng. Sci. Technol. 45, 362–366 (2010).

     


     

     

    免責(zé)聲明:本網(wǎng)站所轉(zhuǎn)載的文字、圖片與視頻資料版權(quán)歸原創(chuàng)作者所有,如果涉及侵權(quán),請(qǐng)第一時(shí)間聯(lián)系本網(wǎng)刪除。

      標(biāo)簽:
    相關(guān)文章
    無(wú)相關(guān)信息
    日韩人妻精品久久九九_人人澡人人澡一区二区三区_久久久久久天堂精品无码_亚洲自偷自拍另类第5页

    <i id="p68vv"><noscript id="p68vv"></noscript></i>
      <track id="p68vv"></track>

        <video id="p68vv"></video>
      <track id="p68vv"></track>
      <u id="p68vv"><bdo id="p68vv"></bdo></u>

    1. <wbr id="p68vv"><ins id="p68vv"><progress id="p68vv"></progress></ins></wbr>
      <code id="p68vv"></code>
        <output id="p68vv"><optgroup id="p68vv"></optgroup></output>
    2. 五月天综合网亚洲综合天堂网 | 亚洲欧美另类色妞网欧美吧 | 亚洲欧美日韩国产综合一区二区 | 最新精品国产免费 | 午夜男女爽爽刺激视频在线观看 | 日韩AV大片在线一区二区 |