1 鎳基高溫合金材料概述
高溫合金是指以鐵、鎳、鈷為基,在高溫環(huán)境下服役,并能承受嚴酷的機械應力及具有良好表面穩(wěn)定性的一類合金[1]。高溫合金一般具有高的室溫和高溫強度、良好的抗氧化性和抗熱腐蝕性、優(yōu)異的蠕變與疲勞抗力、良好的組織穩(wěn)定性和使用的可靠性[2]。因此,高溫合金既是航空、航天發(fā)動機高溫部件的關鍵材料,又是艦船、能源、石油化工等工業(yè)領域不可缺少的重要材料,已成為衡量一個國家材料發(fā)展水平的重要標志之一 。
在整個高溫合金領域中,鎳基高溫合金占有特殊重要的地位。與鐵基和鈷基高溫合金相比,鎳基高溫合金具有更高的高溫強度和組織穩(wěn)定性,廣泛應用于制作航空噴氣發(fā)動機和工業(yè)燃氣輪機的熱端部件。現(xiàn)代燃氣渦輪發(fā)動機有50%以上質量的材料采用高溫合金,其中鎳基高溫合金的用量在發(fā)動機材料中約占40%。鎳基合金在中、高溫度下具有優(yōu)異綜合性能,適合長時間在高溫下工作,能夠抗腐蝕和磨蝕,是最復雜的、在高溫零部件中應用最廣泛的、在所有超合金中許多冶金工作者最感興趣的合金。鎳基高溫合金主要用于航空航天領域950-1050℃下工作的結構部件,如航空發(fā)動機的工作葉片、渦輪盤、燃燒室等。因此,研究鎳基高溫合金對于我國航天航空事業(yè)的發(fā)展具有重要意義。
鎳基高溫合金是以鎳為基體(含量一般大于50 )、在650~1000℃范圍內具有較高的強度和良好的抗氧化、抗燃氣腐蝕能力的高溫合金[2]。它是在Cr20Ni80合金基礎上發(fā)展起來的,為了滿足1000℃左右高溫熱強性(高溫強度、蠕變抗力、高溫疲勞強度)和氣體介質中的抗氧化、抗腐蝕的要求,加入了大量的強化元素,如W、Mo、Ti、Al、Nb、Co等,以保證其優(yōu)越的高溫性能。除具有固溶強化作用,高溫合金更依靠Al、Ti等與Ni形成金屬問化合物γ′相(Ni3A1或Ni3Ti等)的析出強化和部分細小穩(wěn)定MC、M23C6碳化物的晶內彌散強化以及B、Zr、Re等對晶界起凈化、強化作用。添加Cr的目的是進一步提高高溫合金抗氧化、抗高溫腐蝕性能。鎳基高溫合金具有良好的綜合性能,目前已被廣泛地用于航空航天、汽車、通訊和電子工業(yè)部門。隨著對鎳基合金潛在性能的發(fā)掘,研究人員對其使用性能提出了更高的要求,國內外學者已開拓了針對鎳基合金的新加工工藝如等溫鍛造、擠壓變形、包套變形等。
2 鎳基高溫合金的發(fā)展歷程
鎳基高溫合金在整個高溫合金領域占有特殊重要的地位,它的開發(fā)和使用始于20世紀30年代末期,是在噴氣式飛機的出現(xiàn)對高溫合金的性能提出更高要求的背景下發(fā)展起來的。英國于1941年首先生產(chǎn)出鎳基合金Nimonic75(Ni--20Cr-0.4Ti),為了提高蠕變強度又添加鋁,研制出Ni-monic80(Ni--20Cr--2.5Ti一1.3Al)。美國于40年代中期,蘇聯(lián)于40年代后期,中國于50年代中期也研制出鎳基高溫合金。
鎳基高溫合金的發(fā)展包括兩個方面:合金成分的改進和生產(chǎn)工藝的革新。50年代初,真空熔煉技術的發(fā)展為煉制含高鋁和鈦的鎳基合金創(chuàng)造了條件;50年代后期,采用熔模精密鑄造工藝,發(fā)展出一系列具有良好高溫強度的鑄造合金;60年代中期發(fā)展出性能更好的定向結晶和單晶高溫合金以及粉末冶金高溫合金;為了滿足艦船和工業(yè)燃氣輪機的需要,60年代以來還發(fā)展出一批抗熱腐蝕性能較好、組織穩(wěn)定的高鉻鎳基合金。在從40年代初到70年代末大約40年的時間內,鎳基合金的工作溫度從700℃提高到1100℃,平均每年提高10℃左右。鎳基高溫合金的發(fā)展趨勢如圖l所示。
圖1 鎳基高溫合金的發(fā)展趨勢
鎳基高溫合金的發(fā)展趨勢是耐高溫能力更強的單晶高溫合金。單晶高溫合金由于其優(yōu)異的高溫力學I生能得到了廣泛應用。至今,單晶高溫合金已經(jīng)發(fā)展到第四代。使用溫度接近合金熔點80-90%的第三代鎳基單晶高溫合金代表了上個世紀末高溫合金發(fā)展的最高水平。目前,更加優(yōu)良的第四代單晶的研制已經(jīng)取得了初步進展[3]。2000年后出現(xiàn)了第四代單晶高溫合金,例如MC-NG,EPM-102和TMS-162,它們的特征是都添加了釕元素[4]。一個現(xiàn)代單晶渦輪葉片的成本是等重量的微合金鋼的數(shù)百倍,不僅反映出構成單晶高溫合金元素}向貴重或稀缺,更顯示出所用工藝的先進程度。
3 鎳基高溫合金的性能研究
(一)力學性能
20世紀70年代,B.H.Kean等做持久實驗時發(fā)現(xiàn),以擠壓比16:1擠壓In-100合金,在1040℃ 的實驗溫度下得到1330%的延伸率,并認為這與合金中析出的第二相粒子控制晶粒長大有關。粉末高溫合金由于其細晶組織而較易得到超塑性,如In-l00、In-713、U-700等鎳基高溫合金可以通過粉末冶金的方法獲得超塑性,其延伸率可以達到1000%[5]。利用快速凝固法也可以實現(xiàn)高溫合金晶粒的微細化,從而得到組織超塑性現(xiàn)象。
毛雪平等[6]在500~600℃高溫條件下對鎳基合金C276進行了拉伸力學試驗,并分析了溫度對彈性模量、屈服應力、斷裂強度以及延伸率的影響,發(fā)現(xiàn)鎳基合金C276在高溫下具有屈服流變現(xiàn)象和良好的塑性。
(二)氧化行為
在高溫條件下,抗氧化性靠Al2O3。和Cr2O2。保護膜提供,因此鎳基合金必須含有這兩種元素之一或兩者都有,尤其是當強度不是合金主要要求時,要特別注意合金的抗高溫氧化性能和熱腐蝕性能,高溫合金的氧化性能隨合金元素含量的不同而千差萬別,盡管高溫合金的高溫氧化行為很復雜,但通常仍以氧化動力學和氧化膜的組成變化來表征高溫合金的抗氧化能力。趙越等[7]在研究K447在700~950℃ 的恒溫氧化行為時發(fā)現(xiàn)其氧化動力學符合拋物線規(guī)律:在900℃以下為完全抗氧化級,在900~950℃為抗氧化級,而且K447氧化膜分為3層,外層是疏松的Cr2O3。和TiO2。的混合物,并含有少量的NiO及NiCr2O4尖晶石;中間層是Cr2O3;內氧化物層是Al2O3。并含有少量TiN,隨著溫度的升高,表面氧化物的顆粒變大,導致表面層疏松,氧化反應加速進行。
(三)疲勞行為
在實際應用中,各種零部件在承受著高溫、高應力的作用時,尤其在啟動、加速或減速過程中,快速加熱或冷卻引起的各種瞬間熱應力和機械應力疊加在一起,致使其局部區(qū)域發(fā)生塑性變形而產(chǎn)生疲勞影響零件壽命,故要研究其高溫疲勞行為。何衛(wèi)鋒等在研究激光沖擊工藝對GH742鎳基高溫合金疲勞性能的影響時發(fā)現(xiàn),激光沖擊強化能延長鎳基高溫合金抗拉疲勞壽命316倍以上,延長振動疲勞壽命214倍,強化后殘余壓應力影響層深度達110mm。郭曉光等在研究鑄造鎳基高溫合金K435室溫旋轉彎曲疲勞行為時發(fā)現(xiàn),在應力比R= -1,轉速為5000r/min(8313Hz)和實驗室靜態(tài)空氣介質環(huán)境下,K435合金室溫旋轉彎曲疲勞極限為220MPa,裂紋主要萌生在試樣表面或近表面缺陷處,斷口主要由裂紋萌生區(qū)、裂紋穩(wěn)態(tài)擴展區(qū)和瞬間斷裂區(qū)組成。黃志偉等在研究鑄造鎳基高溫合金M963的高溫低周疲勞行為時發(fā)現(xiàn),由于高溫氧化作用在相同的總應變幅下,M963合金在低應變速率下具有較短的壽命;因為該合金的強度高、延性低,形變以彈性為主,M963合金具有較低的塑性應變幅和較低的過渡疲勞壽命。于慧臣等[8]朝在研究一種定向凝固鎳基高溫合金的高溫低周疲勞行為時發(fā)現(xiàn),由于合金在不同溫度范圍內具有不同的微觀變形機制,溫度對合金的變形有明顯影響,在760℃以下合金呈現(xiàn)循環(huán)硬化,而在850℃和980℃時則表現(xiàn)為循環(huán)軟化。
(四)高溫蠕變行為
當溫度T≥(0.3~0.5)Tm時,材料在恒定載荷的持續(xù)作用下,發(fā)生與時間相關的塑性變形。實際上是因為在高溫下原子熱運動加劇,使位錯從障礙中解放出來從而引起蠕變。水麗等在對一種鎳基單晶合金的拉伸蠕變特征進行分析時發(fā)現(xiàn),在980~1020℃、200~280MPa條件下蠕變曲線均由初始、穩(wěn)態(tài)及加速蠕變階段組成;在拉伸蠕變期間γ′強化相由初始的立方體形態(tài)演化為與應力軸垂直的N-型筏形狀;初始階段位錯在基體的八面體滑移系中運動;穩(wěn)態(tài)階段不同柏氏矢量的位錯相遇,發(fā)生反應形成位錯網(wǎng);蠕變末期,應力集中致使大量位錯在位錯網(wǎng)破損處切人筏狀7相是合金發(fā)生蠕變斷裂的主要原因。李楠等在研究熱處理對一種鎳基單晶高溫合金高溫蠕變性能的影響時發(fā)現(xiàn),尺寸為0.4 m左右、規(guī)則排列的立方γ′相具有較好的高溫蠕變性能,而較小的γ′相和較大的γ′相均不利于合金在高溫下的蠕變性能,二次時效處理對提高合金高溫蠕變強度的作用不大,筏形組織的完善程度影響合金高溫下的蠕變性能,二次γ′相不利于提高合金高溫蠕變性能。
4 鎳基高溫合金的強化研究
(一)熱處理
熱處理對合金第二相粒子γ′相的形成、形態(tài)和穩(wěn)定性有重要影響,探索合適的熱處理制度對控制和穩(wěn)定合金的微觀組織、提高合金的高溫性能有著積極的意義。經(jīng)過長期反復研究證實,時效強化的實質是從過飽和固溶體中析出許多非常細小的沉淀物顆粒,形成一些體積很小的溶質原子富集區(qū)。在時效處理前進行固溶處理時,必須嚴格控制加熱溫度,以便使溶質原子能最大限度地固溶到固溶體中,同時又不致使合金熔化。在進行人工時效處理時,必須嚴格控制加熱溫度和保溫時間,才能得到比較理想的強化效果;生產(chǎn)中有時采用分段時效,即先在室溫或比室溫稍高的溫度下保溫一段時間,然后在更高的溫度下再保溫一段時間。
(二)表面處理
由于鎳基高溫合金成分十分復雜,含有鉻、鋁等活潑元素,高溫合金零件表面在氧化或熱腐蝕環(huán)境中表現(xiàn)為表面化學不穩(wěn)定,同時經(jīng)機械加工而制成的零件表面留下加工硬化或殘余應力等表面缺陷,這對高溫合金零件的化學性能和力學性能都帶來十分不利的影響。為了消除這些影響,常采用表面防護、噴丸處理、表面晶粒細化以及表面改性等措施。噴丸強化是工業(yè)上常用的提高疲勞性能的表面改性工藝技術。高玉魁等發(fā)現(xiàn)噴丸強化可以延長DD6單晶高溫合金在高溫下的疲勞壽命,而且隨著溫度升高,疲勞壽命增益系數(shù)下降。在實際應用中發(fā)現(xiàn)噴丸處理對材料強化效果不佳,對合金疲勞性能改善甚微,現(xiàn)急需一種效果更好的強化方法來取代噴丸,隨著高能脈沖激光器制造水平的提高而發(fā)展起來的激光沖擊強化技術無疑是一種理想的替代方式,通過強激光誘導的沖擊波在金屬表層引入殘余壓應力,從而抑制疲勞裂紋的萌生和發(fā)展,是一種新型的金屬表面強化技術。
(三)合金元素
鎳基高溫合金能溶解較多的合金元素,如Cr、W、Mo、Co、Si、Fe、A1、Ti、B、Nb、Ta、Hf等。這些合金元素加入到基體中可以產(chǎn)生合金強化效應,影響鎳基高溫合金的性能,改善合金的組織。
在鎳基合金中添加微量稀土元素,能提高合金的熱加工性能和抗氧化性能。周永軍等I- 在研究稀土對鎳基高溫合金性能影響的電子理論中發(fā)現(xiàn),稀土與雜質硫相互吸引,其結果是分散和固定部分雜質,可以改善合金高溫性能。
最近的研究發(fā)現(xiàn),加入碳可以凈化合金液,改善合金的抗腐蝕性能,并且可以減少再結晶的幾率,碳的微量加入還有利于降低合金縮孔含量。劉麗榮等在研究碳對一種單晶鎳基高溫合金鑄態(tài)組織的影響時發(fā)現(xiàn),隨著碳含量的增加,合金的初熔溫度逐漸降低,共晶數(shù)量和尺寸減小,碳化物數(shù)量逐漸增多,碳化物的形態(tài)從斑點狀變?yōu)榘唿c狀和骨架狀相結合的網(wǎng)狀結構,一次枝晶間距變化較大,而二次枝晶間距變化不大,W和AI元素的偏析降低,Ta和Mo元素的偏析增大。
為了保持合金的組織穩(wěn)定性,第二、三代單晶高溫合金在提高難熔金屬元素的同時不得不降低元素Cr的含量,含量的持續(xù)降低會損害合金的抗氧化、抗腐蝕性能,在第四代鎳基單晶高溫合金中,引入新的合金元素Ru,能夠提高鎳基高溫合金的液相線溫度,提高合金的高溫蠕變性能和組織穩(wěn)定性,與第三代單晶高溫合金相似,第四代單晶高溫合金中Cr的質量分數(shù)仍然較低,為2 ~4。目前國內外對高Cr+Ru鎳基高溫合金的研究還非常有限。石立鵬等[9]在研究高Ru和高 對鎳基高溫合金組織穩(wěn)定性的影響時發(fā)現(xiàn),高Cr能促進TCP相形成,而高Ru的添加在高合金中可以有效地抑制TCP相的析出,從而提高組織穩(wěn)定性。
Al、Ti和Ta元素都是近年來發(fā)展的單晶高溫合金中的重要元素。A1和Ti是 相形成元素,同時Ti也是MC碳化物形成元素;Ta能置換一部分Al和Ti而進入γ′相,同時也與碳形成穩(wěn)定的TaC,在只有微量碳的單晶高溫合金中絕大多數(shù)Ta幾乎都進入γ′相。因此,A1、Ti和Ta是γ′相形成和強化元素,其含量能夠決定合金的強化相7 的百分含量及其強化程度。
5 鎳基高溫合金的發(fā)展趨勢
從用途和發(fā)展的角度分析,鎳基高溫合金的發(fā)展趨勢必向高強度、抗熱腐蝕性、密度小的方向發(fā)展。
(1)追求高強度。通過添加適量的Al、Ti、Ta,保證γ′強化相的數(shù)量。加人大量的W、Mo、Re等難熔金屬元素,也是提高強度的有效途徑。但是為了維持良好的組織穩(wěn)定性,不析出σ、υ等有害相,而在新一代合金中通過加入Ru來提高合金的組織穩(wěn)定性。
(2)發(fā)展抗熱腐蝕性能優(yōu)越的單晶合金。通過添加適量的W、Ta等難熔金屬,保證高的Cr含量。(3)發(fā)展密度小的單晶合金。從航空發(fā)動機設計的角度考慮,密度大的合金難有作為,特別是對動葉片,在非常大的離心力下是不適合的。為此,要發(fā)展密度小的單晶高溫合金,如CMSX-6、RR2000、TMS-61、A 3、ONERA M-3等,其中的RR2000單晶合金實際上是在IN100(K17)合金基礎上發(fā)展的,密度為7.87g/cm3[10]。
參考文獻
[1] C.T.Sims.Superalloys:Genesis and Character.Superalloy Ⅱ .New York:John Wiley&Sons,1987.3-26.
[2] 黃乾堯,李漢康。高溫合金。北京:冶金工業(yè)出版社,2000.1.
[3] 殷鳳仕。熔體處理和熱處理對M963合金微觀結構及力學性能的影響。[學位論文].中國科學院研究生院。2003
[4] R.C.Reed.The Superalloy Fundamentals and Applications.Gambridge University Press,2006.19-20.
[5] 汪大年。金屬塑性成形原理EM].北京:機械工業(yè)出版社,1982
[6] 毛雪平,王崗,張立殷,等。鎳基合金C276高溫拉伸力學性能的試驗分析[J].動力工程,2009,29(7):699
[7] 趙越,楊功顯,袁超,等。鑄造鎳基高溫合金K447的高溫氧化行為口].腐蝕科學與防護技術,2007,27(1):1
[8] 于慧臣,李影,張國棟,等。一種定向凝固鎳基高溫合金的高溫低周疲勞行為[J].失效分析與預防,2008,3(1):1
[9] 石立鵬,王萬波,馮強,等。高Ru和高cr對鎳基高溫合金組織穩(wěn)定性的影響[J].北京科技大學學報,2008,30(12):1362
[10] 謝錫善,董建新,胡堯和,等。鐵鎳基高溫耐蝕合金的研究與發(fā)展_J].世界鋼鐵,2009(1):50
免責聲明:本網(wǎng)站所轉載的文字、圖片與視頻資料版權歸原創(chuàng)作者所有,如果涉及侵權,請第一時間聯(lián)系本網(wǎng)刪除。

官方微信
《中國腐蝕與防護網(wǎng)電子期刊》征訂啟事
- 投稿聯(lián)系:編輯部
- 電話:010-62316606-806
- 郵箱:fsfhzy666@163.com
- 中國腐蝕與防護網(wǎng)官方QQ群:140808414